Erinnerung:

Ab jetzt betrachten wir \mathbb{R} immer mit der Standard-Norm | |. Sei V ein \mathbb{R} -Vektorraum.

Definition: Eine symmetrische Bilinearform

$$\langle \ , \ \rangle \colon \ V \times V \to \mathbb{R}, \ (v, w) \mapsto \langle v, w \rangle$$

heisst positiv definit, wenn zusätzlich gilt:

$$\forall v \in V \setminus \{0\} \colon \langle v, v \rangle > 0.$$

Der Betrag eines Vektors $v \in V$ bezüglich \langle , \rangle ist dann die Zahl

$$||v|| := \sqrt{\langle v, v \rangle} \in \mathbb{R}^{\geqslant 0}.$$

Definition: Eine positiv definite symmetrische Bilinearform heisst ein <u>Skalarprodukt</u>. Ein \mathbb{R} -Vektorraum zusammen mit einem Skalarprodukt heisst <u>euklidischer Vektorraum</u> (V, \langle , \rangle) .

Definition: Das Standard-Skalarprodukt auf \mathbb{R}^n ist für $x = (x_i)_i$ und $y = (y_i)_i$ gegeben durch

$$\langle x, y \rangle := x^T y = x_1 y_1 + \ldots + x_n y_n.$$

Der zugehörige Betrag ist die ℓ_2 -Norm

$$||x|| := \sqrt{x_1^2 + \ldots + x_n^2}.$$

Beispiel: Sei V ein Unterraum des Raums der stetigen Funktionen $[a,b] \to \mathbb{R}$ für reelle Zahlen a < b. Sei φ eine stetige Funktion $[a,b] \to \mathbb{R}^{\geqslant 0}$ mit höchstens endlich vielen Nullstellen. Dann ist

$$\langle f,g\rangle := \int_a^b f(t)g(t)\varphi(t)\,dt \qquad \text{would defin integral}$$
 believe . Tymphie.

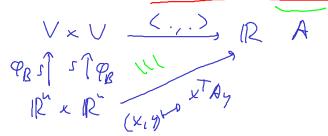
ein Skalarprodukt auf V.

$$\Rightarrow \langle \ell, \ell \rangle \geq \int_{\mathbb{R}} \frac{1}{2} \varphi(t) dt > 0.$$

$$[a,b)_{\Lambda} [x \cdot \xi, x \neq \xi] \Rightarrow \text{pority deficit.}$$

Definition: Eine reelle symmetrische $n \times n$ -Matrix A mit der Eigenschaft $x^T A x > 0$ für alle $0 \neq x \in \mathbb{R}^n$ heisst positiv definit.

Proposition: Sei B eine geordnete Basis von V. Eine symmetrische Bilinearform \langle , \rangle auf V ist positiv definit genau dann, wenn die Darstellungsmatrix $[\langle , \rangle]_B$ positiv definit ist.



Beispiel: Für jede positiv definite symmetrische reelle $n \times n$ -Matrix A ist die folgende Abbildung ein Skalarprodukt auf \mathbb{R}^n :

$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x, y) \mapsto x^T A y$$

und umgekehrt hat jedes Skalarprodukt auf \mathbb{R}^n diese Form.

10.6 Grundeigenschaften

Im diesem und den folgenden Abschnitten sei (V, \langle , \rangle) ein euklidischer Vektorraum mit der zugehörigen Betragsfunktion $\| \|$.

Satz: (Cauchy-Schwarz Ungleichung) Für beliebige $v, w \in V$ gilt

$$|\langle v, w \rangle| \leqslant ||v|| \cdot ||w||.$$

Weiter gilt Gleichheit genau dann, wenn v und w linear abhängig sind.

Ben .:
$$w = \lambda v \Rightarrow \langle v, \omega \rangle = \langle v, \lambda v \rangle = \lambda \cdot \langle v, v \rangle = \lambda \cdot \|v\|^2$$

$$||u||^2 = \langle u, \omega \rangle = \langle \lambda v, \lambda v \rangle = \lambda^2 \cdot \langle v, v \rangle = \lambda^2 ||v||^2$$

$$||u|| = |\lambda| \cdot ||v||$$

$$||u|| = |\lambda| \cdot ||v||^2 = ||v|| \cdot ||w||$$
And when $v = \mu w$. Are gift charit, when v, ω his all $v = 0$.

$$||v|| = ||v|| \cdot ||v||^2 = ||v|| \cdot ||v||^2$$
Six also $v \neq 0$. Sithe $||\lambda|| = \frac{\langle v, \omega \rangle}{||v||^2}$

$$||v||^2 = \langle v, \omega \rangle - \lambda \langle v, \omega \rangle + \lambda^2 \cdot ||v||^2$$

$$||u||^2 - 2\lambda \langle v, \omega \rangle + \lambda^2 \cdot ||v||^2$$

$$= \| u \|^{2} - 2 \lambda^{2} \| v \|^{2}$$

$$= \| u \|^{2} - \lambda^{2} \| v \|^{2}$$

$$\chi^{2} \| v \|^{2} \leq \| u \|^{2}$$

Proposition: Der zugehörige Betrag $\ \ $ ist eine Norm auf V .
Sen: V -1/2 >0, vr v = \(\sur_v) wolldef, Leprist.
Lull= Ll. Will riche alun.
(v+w 2 = (v+w,v+w) = (v,v) + (w,v) + (v,v) + (w,v)
= llvll2+2< v, w> + llwll2 7 llv+wll & llv(1+11wll)
= \lull2+2<\underson>+ \lull2 \\ \lull2 = (\lull+\lull) \\ \] \\ \qed -
Proposition: Für beliebige $v, w \in V$ gilt $ v + w = v + w $ genau dann, wenn einer der Vektoren ein
nicht-negatives skalares Vielfaches des anderen ist.
Re. (2010 2:4 hier (=) < ~, w> = v (. w (.

Ber: Gleichliet hier (=) $(v, w) = \|v\| \cdot \|w\|$.

(=) $|(v, w)| = \|v\| \cdot \|w\|$ and $|(v, w)| \ge 0$.

(=) $|(v, w)| = \|v\| \cdot \|w\|$ and $|(v, w)| \ge 0$.

(=) $|(v, w)| = \|v\| \cdot \|w\|$ and $|(v, w)| \ge 0$.

(=) $|(v, w)| = \|v\| \cdot \|w\|$ and $|(v, w)| \ge 0$.

Levie Chichheit

Shirling Chilan

Levie tituchleit.

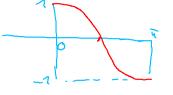
Definition: Ein Vektor $v \in V$ mit Betrag ||v|| = 1 heisst normiert.

Proposition: Für jeden von Null verschiedenen Vektor $v \in V$ ist $\frac{v}{\|v\|}$ normiert.

Definition: Der Winkel zwischen zwei von Null verschiedenen Vektoren $v, w \in V$ ist die eindeutige reelle

Zahl $0 \leqslant \alpha \leqslant \pi$ mit

$$\cos \alpha = \frac{\langle v, w \rangle}{\|v\| \cdot \|w\|} = \left\langle \frac{v}{\|v\|}, \frac{w}{\|w\|} \right\rangle.$$



Definition: Zwei Vektoren $v, w \in V$ mit $\underline{\langle v, w \rangle} = 0$ heissen zueinander *orthogonal*, und man schreibt $v \perp w$.

Ist ein Vektor $v \in V$ orthogonal zu jedem Element einer Teilmenge $S \subset V$, so heissen v und S orthogonal und man schreibt $v \perp S$ oder $S \perp v$.

Ist jedes Element einer Teilmenge $S \subset V$ orthogonal zu jedem Element einer Teilmenge $S' \subset V$, so heissen S und S' orthogonal und man schreibt $S \perp S'$.

Bemerkung: Für jeden Vektor $v \in V$ gilt $v \perp v \Leftrightarrow v = 0$.

Proposition: Zwei Vektoren v und w sind orthogonal genau dann, wenn gilt

ged

10.7 Orthonormalbasen

Definition: Eine Teilmenge $S \subset V \setminus \{0\}$, so dass je zwei verschiedene Elemente von S zueinander orthogonal sind, heisst *Orthogonalsystem*. Ist zusätzlich jeder Vektor in S normiert, so heisst S ein *Orthonormalsystem*. Ist zusätzlich S eine Basis von V, so heisst S je nach Fall eine *Orthogonalbasis* bzw. eine *Orthonormalbasis von V*.

Ein Tupel (v_1, \ldots, v_n) mit $v_i \in \underline{V} \setminus \{0\}$ und $v_i \perp v_j$ für alle $i \neq j$ heisst *Orthogonalsystem*. Ist zusätzlich jedes v_i normiert, so heisst das Tupel ein *Orthonormalsystem*. Ist das Tupel zusätzlich eine geordnete Basis von V, so heisst es je nach Fall eine geordnete *Orthogonalbasis* bzw. geordnete *Orthonormalbasis* von V.

Proposition: Jedes Orthonormalsystem ist linear unabhängig.

Bur. Sei $\sum_{i=1}^{n} \alpha_i v_i = 0$ $\Rightarrow \forall j : \langle v_j, \sum_{i=1}^{n} \alpha_i v_i \rangle = \sum_{i=1}^{n} \alpha_i \cdot \langle v_j, v_i \rangle = \alpha_j \cdot ||v_j||^2$ (v_1, \dots, v_n) Orthographysh (v_1, \dots, v_n) $(v_$

Proposition: Eine geordnete Basis B von V ist eine Orthogonalbasis genau dann, wenn die Darstellungsmatrix des Skalarprodukts $[\langle \ , \ \rangle]_B$ eine Diagonalmatrix ist. Sie ist eine Orthonormalbasis genau dann, wenn die Darstellungsmatrix die Einheitsmatrix ist.

Ben: [(.,)] = ((vi,vj)); = I vi || Diagnol undix (=) Orthogonal duis.

H i= : (vi,vj) = || vi || Einlaid undix (=) ONB.

Orthogonal duis. I

Proposition: Sei B eine Orthonormalbasis von V, und sei $v \in V$ beliebig. Dann gilt $\langle b, v \rangle = 0$ für fast alle $b \in B$, und v hat die Entwicklung

$$v = \sum_{b \in P} \langle b, v \rangle \cdot b.$$

$$\Rightarrow \forall b \in B : \langle b, v \rangle = \langle b, \sum_{i \in B} \langle a_{i}, b' \rangle = \sum_{i \in B} \langle a_{i}, \langle b, b' \rangle$$

$$= 0 \text{ fent alle } (b, v) = 0$$

$$= \sum_{i=0}^{n} (b, v) \cdot b \cdot \frac{1}{n} \cdot \frac{1}{$$